Yee Yang En (1, 3), Tania Santosh Nair (1, 3), Jonathan Binder (4), Gayathri Kopattil (4), Ethan Morgan (4), Patrick Burke (4), Alexandra Sheldrake (4), Lee Soo Chin (2), Ow Guan Wei Samuel (2), Lee Pei Ling (2), Lee Yee Mei (2), Haryani Mustadi (2), Ashwarya Bandla (1, 2, 4), Richard Paxman (4), Lim Si Jing Joline (2), Raghav Sundar (1, 2, 6)*

The authors would like to thank all the patients who took part in the trials, NCIS nurses, and the Haematology Oncology Research Team. This work was supported by Singapore’s Ministry of Health’s National Medical Research Council through the Clinician Scientist New Investigator Grant; National Research Foundation’s Central Gap Fund; and the National University of Singapore under its N.1 Translational Core fund and N.1 Seed Grant. The authors would also like to thank Paxman Coolers Ltd. for their support in providing the PLCS for this study.

REFERENCES

ACKNOWLEDGMENTS

SAFETY, EFFICACY AND USABILITY OF THE PAXMAN LIMB CRYOCOMPRESSION SYSTEM FOR PREVENTION OF CHEMOTHERAPY-INDUCED PERIPHERAL NEUROPATHY

INTRODUCTION

• Cryotherapy is a promising intervention for preventing chemotherapy-induced peripheral neuropathy (CIPN). [1]
• Current methods of delivering hypothermia have limited efficacy. [2]

• The Paxman Limb Cryocompression System (PLCS) was developed for use in chemotherapy suites to prevent CIPN (Fig. 1).
• We report the safety, tolerability, efficacy and various usability aspects of the PLCS in delivering cryocompression.

METHOD

• Optimal PLCS parameters were determined in a previous healthy volunteer study [3]
• 15 breast cancer patients receiving weekly paclitaxel chemotherapy underwent concomitant limb cryocompression for 12 weeks (Fig. 2).

• Safety was evaluated with cryotherapy-related adverse events.
• Tolerability was measured using a Visual Analogue Pain Scale.
• Efficacy was evaluated using the EORTC Quality of Life Questionnaire-CIPN20.
• Skin surface temperatures were recorded to evaluate cooling efficiency.
• Usability questionnaires were used to assess design and user experience.

RESULTS

• 14 out of 15 cancer patients completed 12 cycles of cryocompression.
• 1 patient completed 11 cycles due to other medical reasons not related to cryocompression tolerance.
• 83.8% of the cryocompression sessions were maintained at optimal temperature (11°C) or below.
• No core hypothermia or paclitaxel dose reductions due to CIPN.
• Mean difference in CIPN20 sensory neuropathy scores: 1.2
• 2 patients (13%) developed clinically meaningful CIPN (Fig. 3).
• Average skin temperature drop (Fig. 4):
 - 11.53 ± 4.63°C (Arms), 10.80 ± 1.47°C (Legs)

• Feedback on comfort and usability of the PLCS (Fig. 5).

CONCLUSION

• The PLCS delivers safe, tolerable and effective cryocompression to prevent CIPN.
• Feedback from various stakeholders used to improve PLCS design (Fig. 6, 7, 8).
• Continuing to recruit 80 cancer patients in Singapore.
• National Cancer Institute (US) running a three-armed randomized study with 777 cancer patients.