Introduction

- Chemotherapy-induced alopecia (CIA) is a common and distressing side effect of cancer chemotherapy.
- Head cooling represents the only available treatment against CIA and advanced medical devices such as the Paxman scalp cooling system offer a promising solution.
- It is thus necessary to establish biological models that will allow the study of chemotherapy induced cytotoxicity and provide better understanding of the role of cooling.

Aim

To develop in vitro based cell culture models to test and improve the efficacy of Paxman Coolers’ scalp cooling system in hair loss prevention during anticancer chemotherapy.

Cytotoxicity studies

- Normal Human epidermal Keratinocytes (NHK, Invitrogen), were used to assess the cytotoxicity of commonly used chemotherapy compounds, such as taxanes and anthracyclines.
- NHK cells were exposed to a wide concentration range of docetaxel, doxorubicin (Sigma) and the active metabolite of cyclophosphamide, 4-hydroxy-cyclophosphamide (4-OH-CP) (Niome, Germany), and combinations thereof.

Results – Cytotoxicity studies

We show that cooling is extremely efficient at protecting NHK cells from drug-induced toxicity against all individual drugs. Notably, cooling showed maximal capacity to protect from cytotoxicity caused by drug concentrations representative of maximal plasma drug levels clinically reported. In contrast to results with individual drugs, combination of these drugs (also referred to as TAC regimen) caused cytotoxicity that was not rescued by cooling.

Drug uptake studies

- 1 x 10^6 cells were incubated with each drug.
- These were placed in appendords and spun down using a centrifuge and then the supernatant was removed and the drug of interest was added.
- A calibration was also made respective to the drug concentration used.

Example Docetaxel

Calibration (without cells): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10µg/ml

Blank (no drug)  Cells with drug 5µg/ml

Method was established using a HPLC Shimadzu Prominence (SIL-20A HT autosampler), data was analysed using LC Solutions (software) with an X Bridge 4.6x250mm (5µm) column for all 3 drugs.

Conclusion

- Results show that cooling at 22°C rescues cells from drug cytotoxicity for all 3 drugs when compared to non-cooling (37°C).
- Cell rescue is observed for a range of concentrations including clinical relevance drug doses.
- Drug uptake data shows how docetaxel drug uptake is affected by cooling and 4-OH-CP is not.
- This shows how there are possibly 2 different mechanisms involved (active or passive) for drug uptake into cells by these two anti-cancer drugs.
- We provide for the first time evidence that, despite their reductionary nature, our in vitro models are robust and biologically relevant and will help us understand the role of cooling in rescuing from keratinocyte cytotoxicity. This will permit the design of scalp cooling-based protocols with improved efficiency.
- Our in vitro findings are in agreement with available clinical observations.

Acknowledgements

We would like to thank Dr. Wim Breed, Dr. Corina Van Der Hurk and Manon Komen for their helpful discussions on this work.

Omar Hussain funded by a knowledge transfer partnership (KTP) grant with Paxman coolers Ltd with funding from the DoH and TSB (single associate project, grant no: KTP000915).

References